针对致冷离心机的帕尔帖冷却技术

引言

离心分离是通过离心力分离混合物的过程。离心机通常用于食品加工和医学研究中的蛋白质、遗传基因和细胞分析。在医学实验室环境中,离心分离需要快速旋转医学样品,以根据不同的密度筛选或浓缩某些物质。密度大的组份会远离中心轴,而密度较小的组份向比较靠近中心轴。

为了满足各种样品量、离心力和每分钟转数(RPM)的要求,离心机往往具备多种型号,其中包括先进的超级离心机、高速离心机、大容量离心机和小型台式离心机等等。按照热管理技术区分,有两种类型的实验室离心机。标准的通风离心机能够控制转桶中的温度,其性能取决于离心机的设计。高端致冷离心机可提供样品的热管理,需要针对环境条件进行温度控制。许多样品需要在离心室内进行精确的温度控制,尤其是对于敏感的活细胞和蛋白质,必须要在特定的恒温下存储和测试,以确保样品适当的反应和活力。


离心机利用离心力来分离混合物。

 

用于护理点检测(POCT)的现代热电冷却器

简介

护理点检测 (POCT) 的目标是为患者提供方便、即时的医疗护理。医疗和实验室先进的检测设备现在可以在一小时内(而不是几天)内提供准确、实时的诊断检测结果。护理点检测正在使医生和患者快速获得检测结果,这一点非常重要,不仅可以改善患者护理,还可以提高公共健康。最近的全球新冠(COVID-19)大流行表明,快速检测对于有效管理病毒传播至关重要。护理点检测通常是采用聚合酶链反应 (PCR) 热循环仪等便携式自动分析仪进行检测,在护理点进行检测可以简化诊断过程,并有助于确保患者在需要时迅速获得最有效的护理。这些便携式分析仪的小型化使热管理变得更加重要,为了确保便携式医疗仪器的长期性能稳定及其检测结果的准确性,精确的温度控制至关重要。与其他热技术相比,热电冷却器提供了一种更紧凑、更具成本效益和更可靠的温度控制方法。

液相色谱系统的加热和制冷

简介

高效液相色谱(HPLC)是一种通过分离、鉴定和量化组成成分来分析液体混合物的技术。液相色谱法通常只需对少量材料进行操作,便可以测量混合物中待分析物的相对比例。高效液相色谱仪器设备广泛用于制药、食品科学和石油等行业的研发实验室或逆向工程等。

温度控制能够影响样本组分和吸附剂之间的相互作用,在液相色谱分离过程中起着重要作用。现代HPLC 仪器利用热电帕尔贴(Peltier)效应来制冷或加热样本托盘和分离柱。莱尔德热系统(Laird Thermal Systems)的完整热管理系统能够优化液相色谱设备的性能。,根据HPLC 系统的热负荷能力要求,这些热管理系统可以是热电制冷器或与我们SR-54 系列温度控制器组合使用的热电组件。

 

培养箱的加热和制冷

简介

培养箱用于在医院和实验室环境下的细胞和组织培养,可在受控条件下培养和维持细胞或组织样本数小时、数周甚至数月。通过保持最佳的温度、湿度、二氧化碳和氧气水平,培养箱能够为细胞和组织样本的生长创造理想环境。对这些环境因素的精确控制使那些细胞培养至关重要的行业能够进行研究和实验工作,这些行业包括动物学、微生物学、药物研究、食品科学和化妆品等。

精准的温度控制对细胞生长尤其重要。如果高于和低于 37°C 的最佳哺乳动物体温,即使只有 6°C,也会对细胞健康产生负面影响。如果温度太低,生长就会减慢,有时甚至造成永久性影响;如果温度过高,敏感蛋白质就会开始变性。

使用热电技术替代基于压缩机的热管理解决方案可提供一种更高效、更具成本效益的选择。此外,世界各地政府对传统制冷剂的最新限制是基于压缩机制冷系统面临的核心问题,这使得热电技术成为一种更环保的培养箱温度控制解决方案。

培养箱要求

在培养箱中,必须要对温度、湿度、二氧化碳和氧气水平进行严格控制,才能进行适当的细胞培养。根据培养箱腔室尺寸,热负荷要求可以在 30~400W 以上的范围内。对于 CO2 培养箱,还必须保持 95%~98%的相对湿度水平和 0.3%~19.9%的指定 CO2 浓度。

 

Common Coolant Types and their Uses in Liquid Cooling Systems

Introduction

As power densities and thermal loads continue to increase in crowded electronic systems, and specific analytical and diagnostic testing processes demand more temperature stabilization for improved accuracy and results, more equipment designers, R&D labs and diagnostic laboratories are turning to liquid cooling solutions for better thermal management. Optimal cooling fluids improve accuracy of results, improve equipment performance, minimize downtime, reduce maintenance costs, ensure safety and can help meet environmental compliance.

Eco-Friendly Temperature Stabilization Solutions for OEMs’ Climate Action Goals

Introduction

At Laird Thermal Systems, we are committed to eco-friendly solutions for temperature stabilization for demanding applications across global medical, analytical, industrial, transportation, and telecommunications markets.

Older compressor-based systems often use high global-warming potential (GWP) HFC refrigerants like R134a and R404A. New industry requirements are moving away from the use of such refrigerants due to their environmental impact. New government restrictions on traditional and natural refrigerants are central to compressor-based systems.

Advanced Liquid Cooling for Rheometers

 

Introduction

Rheometers are scientific instruments used for studying the stress-strain relationship of polymers, fluids, and other soft materials to understand their flow/deformation properties. Rheometers are applied in a wide range of applications, such as in the development of new materials, quality control, and process optimization. Any rheometer that operates at elevated temperatures or measures temperature-dependent material properties requires a cooling system to maintain a precise temperature during testing.

用于小型光学图像感测应用的多级微型热电制冷器

引言

微型光学设备封装能够提供牢固的气密密封,用以保护CMOS、CCD、IR和X射线探测器等小型图像传感组件。TO CAN等光学封装广泛用于图像感测领域。对于高端图像感测,微型热电制冷器(TEC)可以集成到光学封装中,被称为光学热电组件(TEA)。可实现深度冷却,使温度达到远低于环境温度以下,以最大限度地减少热噪声并捕获最大光谱量。为了实现精确的温度控制,冷却图像传感器需要高度工程化的微型多级TEC。
 

应用挑战

微型光学TEA应用广泛,适合于热成像、高性能相机、气体探测器、光谱仪、边界安全、数字显微镜、计量学和国防等应用领域。对于这些类型的应用,光学TEA设计需要面对几个挑战,其中包括热管理、尺寸限制、光学机械稳定性、制造一致性和成本优化等。

用于下一代光模块的微型热电制冷器

引言

在数据通信和通讯行业,光纤技术已经基本上取代了铜线。包括人工智能和机器学习在内的许多新兴应用需要更高数据传输速率,并支持更远距离的带宽,而所有这些都需要以更低成本实现。在许多应用中,温度稳定性能够提高光纤系统中至关重要的关键光电元件性能和寿命。在本应用指南中,我们将讨论通讯应用中常见的半导体激光器,以及微型热电制冷器(TEC)如何为半导体激光器散热,以便优化系统的整体性能。

微型热电制冷器能够给半导体激光器散热,并优化系统整体性能