Heads-Up Displays

Peltier Cooling for Machine Vision

Introduction

Machine vision is the replacement of human examination, assessment and decision-making with video hardware and software systems. The technology is often used for vision inspection, quality control, robotics, wire bonding and down-hole applications where machine vision systems obtain data from analyzing images of a specific process or activity. 




Download PDF:


Thermoelectric Cooling for CMOS Sensors

Introduction

For nearly 50 years CCD (charge-coupled device) sensors and CMOS (complementary metal-oxide semiconductor) sensors have competed on cost and performance in a wide range of digital imaging applications. Peltier coolers (thermoelectric coolers) have cooled both technologies when the requirement demanded high-resolution images. Design engineers opted to use CCD’s for astrophotography, super-resolution microscopy, x-ray crystallography, and spectrophotometric assays. On the other hand, CMOS sensors made inexpensive digital photography a reality.




Download PDF:


DA-014-12-02 Direct-to-Air

The DA-014-12-02 is a Direct-to-Air Thermoelectric Assembly (TEA) that uses impingement flow to transfer heat. It offers dependable, compact performance by cooling objects via conduction. Heat is absorbed through a cold plate and dissipated thru a high density heat exchanger equipped with an air ducted shroud and brand name fan. It has a maximum Qc of 12 Watts when ΔT = 0 and a maximum ΔT of 50 °C at Qc = 0.


Qc Max:


Cooling Solutions for Autonomous Systems

Introduction

Advances in autonomous technologies, such as smart headlights, autonomous systems for collision avoidance, and infotainment systems, require enhanced thermal protection of critical electronics to ensure optimized performance. These emerging intelligent autonomous systems are increasingly complex while decreasing in size and weight. Packing more functionality into smaller footprints has increased the heat flux density and thermal challenges in autonomous systems.




Download PDF: