Industrial Laser

Spot Cooling for Industrial Lasers




Industrial laser applications require a stable temperature to ensure maximum performance. Thermoelectric coolers provide spot cooling for laser optics to deliver robust, low-power and maintenance-free operation. By utilizing advanced thermoelectric materials, the UltraTEC™ UTX Series achieves greater heat pumping capacity and a higher thermal insulating barrier compared to standard semiconductor materials, making it ideal for spot cooling of industrial laser applications.



Nextreme Thermoelectric Chiller for Low Power Lasers




Temperature stabilization is key to maintaining peak performance for any industrial laser system. With a cooling capacity of up to 400 Watts and a temperature stability to within ±0.05°C of the set point temperature, the NRC400 Nextreme Performance Chiller is ideal for cooling low-power laser applications. 



OEM Perspectives: Recirculating Chillers for Industrial Lasers

Introduction

Industrial lasers are used for a wide range of applications including cutting, welding, micro-machining, additive manufacturing and drilling. No matter the application, industrial laser systems generate a significant amount of heat. There are several different types of industrial laser technologies, ultimately distinguished by the power density of the laser and its use. For all laser technologies, OEMs seek advanced cooling of the power source and the laser optics.




Download PDF:


Nextreme™ Chillers for Low-Power Lasers






Temperature stabilization is key to maintaining peak performance for any industrial laser system. Thermoelectric-based chillers are becoming popular for cooling lower power lasers due to their high reliability, precise temperature control and low maintenance requirements.



Download Presentation PDF:

Photonics Spectra Magazine: Spot Cooling Helps Industrial Lasers and Optics Stay on Point


The increasing demand in many end markets for advanced manufacturing systems that are able to increase production and cut costs have positioned laser systems as an important fabrication tool. High-power industrial lasers can generate outputs in excess of 10,000 W when processing thick metals, generating a significant amount of heat not only in the targeted surface but also in the sensitive optics inside the laser. The temperature of these optics needs to be maintained to achieve peak performance for the tool. 





OEM Perspectives: Recirculating Chillers for Low-Power Lasers

Introduction

Lasers come in many different sizes and power levels. High power lasers are commonly used for brazing, metal cutting, deep metal welds and metal cleaning, while low power lasers can be used for printing & marking, soldering, plastic welding and laser powder remelting. For all laser technologies, OEMs seek advanced cooling of the power source and the laser optics to maintain peak performance and long life operation.




Download PDF:


Thermoelectric Chillers for Low-Power Lasers

Introduction

Industrial lasers come in various sizes and power levels. Brazing, metal cutting, deep metal welds and metal cleaning require high-power lasers while printing & marking, soldering, plastic welding and laser powder remelting use low power lasers. Temperature stabilization is key to maintaining peak performance for any industrial laser system.




Download PDF:


UTX Series Thermoelectric Cooler


The new UltraTEC UTX Series is a high-performance thermoelectric cooler that is assembled with advanced thermoelectric materials and can boost cooling capacity by up to 10%. The UltraTEC UTX Series features a higher thermal insulating barrier when compared to standard materials creating a maximum temperature differential (ΔT) of 72°C. It features a high heat pump density, precise temperature control, reliable solid-state operation, and does not create any noise or vibration.





2021 Lab Manager Green Labs Digital Summit


Recirculating Chillers Designed for Today’s Green Labs

Today’s chillers are vastly different from their predecessors, offering precise temperature control for laboratory and analytical equipment while delivering energy, size and noise reduction, and environmental impact savings. This versatility allows lab managers to reduce upfront equipment costs and long-term maintenance costs, while increasing lab space and being environmentally compliant.





Machine Design Magazine: Heat Transfer a Cool Concept


Recirculating chillers deliver options for precise temperature control.

Using liquids for heat transfer is an important cooling method for many applications to maximize performance and operational life for thermally sensitive electronics and systems. As next generation systems feature more functionality in smaller, more compact form factors, precise temperature control has become more critical.